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Twist of cholesteric liquid crystal cells: Stability of helical structures and anchoring
energy effects

A. D. Kiselev** and T. J. Sluckifi’
lChernigov State Technological University, Shevchenko Street 95, 14027 Chernigov, Ukraine
2School of Mathematics, University of Southampton, Southampton SO17 1BJ, United Kingdom
(Received 6 December 2004; published 22 March 2005

We consider helical configurations of a cholesteric liquid cry&E&lC) sandwiched between two substrates
with homogeneous director orientation favored at both confining plates. We study the CLC twist wave number
g characterizing the helical structures in relation to the free twisting nuiggoghich determines the equilib-
rium value of CLC pitchPy=27/q,. We investigate the instability mechanism underlying transitions between
helical structures with different spiral half-turn numbers. Stability analysis shows that for equal finite anchoring
strengths this mechanism can be dominated by in-plane director fluctuations. In this case the metastable helical
configurations are separated by the energy barriers and the transitions can be described as the director slippage
through these barriers. We extend our analysis to the case of an asymmetric CLC cell in which the anchoring
strengths at the two substrates are different. The asymmetry introduces two qualitatively different (@lfects:
the intervals of twist wave numbers representing locally stable configurations with adjacent helix half-turn
numbers are now separated by instability gaps; @éndsufficiently large asymmetry, when the difference
between azimuthal anchoring extrapolation lengths exceeds the thickness of the cell, will suppress the jumplike
behavior of the twist wave number.
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[. INTRODUCTION by the half pitchPy/2, becausé and -i are equivalent in
o ) ~ liquid crystals,

In equilibrium cholesteric phase molecules of a liquid Typically, the pitchP, can vary from hundreds of nanom-
crystal(LC) align on average along a local unit directdr)  eters to many micrometers or more, depending on the sys-
that rotates in a helical fashion about a uniform twist axistem. The macroscopic chiral parameterqyK, (and thus the
[1]. This tendency of cholesteric liquid crystal€LCs) to  pitch) is determined by microscopic intermolecular torques
form helical twisting patterns is caused by the presence of3,4] and depends on the molecular chirality of CLC con-
anisotropic molecules with no mirror plane—so-called chiralstituent mesogens. The microscopic calculations of the chiral

molecules(see[2] for a recent review parameter are complicated as it is necessary to go beyond the
The phenomenology of CLCs can be explained in termgnean-field approach and to take into account biaxial corre-
of the Frank free energy density lations [2]. Despite recent progre$$,6], this problem has

not been resolved completely yet.
In this paper we are primarily concerned with orienta-

fn]= 1{Kl(v N2+ Kyn-V Xn+qgl? tional structures in pIanar_ CLC_ceIIs. bounded by two parallel
2 substrates. Director configurations in such cells are strongly
+Kan X (V X n)]2 =Ky divin divn +n affe_zcted by the anchoring_ conditions at the boundary SU_I’fc’_:lCES
which break the translational symmetry along the twisting
X (VxXn]}, (1)  axis. So, in general, the helical form of the director field will

be distorted.

whereK;, K,, Ks, and K,, are the splay, twist, bend, and ~ Nevertheless, when the anchoring conditions are planar
saddle-splay Frank elastic constants. As an immediate cor@1d out-of-plane deviations of the director are suppressed, it
sequence of the broken mirror symmetry, the expression fofight be expected that the configurations still have the form
the bulk free energyl) contains a chiral term proportional to ©f the ideal helical structure. But, by contrast with the case of
the equilibrium value of the CLC twist wave numbey. u_nbounded CLCs, the helix twist wave numigewill now

The parameter, which will be referred to as the free differ from qo.

twist wave number or as the free twisting number, gives thc?. It has .Iong been known_tha}t a mismatch between the equi-
equilibrium helical pitchPy=2/q,. For the twist axis di- ibrium pitch Py and the twist imposed by the boundary con-

rected along thez direction, the director field A ditions may produce two metastable twisting states that are
=(cosqyz,sinqyz, 0) then defines the equilibrium configura- degenerate in energy and can be switched either way by ap-

T S 27 plying an electric field[7]. This bistability underlines the
tion in an unbounded CLC. Periodicity of the spiral is given mode of operation of bistable liquid crystal devices—the so-

called bistable twisted nematics—that have attracted consid-
erable attention over past few decafi@s11].
*Email address: kisel@mail.cn.ua More generally the metastable twisting states in CLC cells
"Email address: t.j.sluckin@maths.soton.ac.uk appear as a result of interplay between the bulk and the sur-
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face contributions to the free energy giving rise to multiplez=-d/2 andd/2. Anchoring conditions at both substrates are

local minima of the energy. The purpose of this paper is tgplanar with the preferred orientation of CLC molecules at the

explore the multiple minima and their consequences. lower and upper plates defined by the two vectors of easy
The free twisting number, and the anchoring energy are orientation:&_ and@&,. These vectors are given by

among the factors that govern the properties of the multiple

minima representing metastable states. Specifically, varying e =6, € =6C0sA¢+esinAg, (2

go Will change the twist wave number of the twisting state,

This may result in sharp transitions between differentwhereA¢ is the twist angle imposed by the boundary con-

branches of metastable states. The dependence of the twitions.

wave numbeig on the free twisting numbaegy is then dis- We shall also write the elastic free energy as the sum of

continuous. As far as we are aware, attention was first drawthe bulk and surface contributions,

to this phenomenon by Pinkevigt al. [12].

These discontinuities are accompanied by a variety of F[n]:f fnldo+ S W,(n)ds, 3)
Vv

physical manifestations which have been the subject of much =)o

recent important research. One such is a jumplike functional

dependence of selective light transmission spectra on temyg assume that both the polar and the azimuthal contribu-

pgrz;ture as a :jesbultzqf I? te'”nger?turkE‘i‘;pleé‘diﬂm cholestefigns to the anchoring enerdy,(n) can be taken in the form
pitch, examined by Zink and Belya ,14. More re- . -
cently Belyakovet al.[15,16 and Paltq17] have discussed of the Rapini-Papoular potentiglg]

different mechanisms behind temperature variations of the

V) v)
pitch in CLC cells and hysteresis phenomena. W,(n) = —2-[1 - (n,€,) a2 + ——[1 = (N,€)] o2,
In this paper we adapt a systematic approach and study 2 2
the helical structures using stability analysis. This approach (4)

enables us to go beyond the previous work by relaxing a

number of constraints. One of these requires anchoring to thereV\/f/f) and V\/j) are the azimuthal and polar anchoring
sufficiently weak(where “sufficiently” will be discussed fur-  strengths.

ther below, so that the jumps may occur only due to transi-  The CLC helical director structures take the following
tions between the helical configurations whose numbers ofpiral form:

spiral half turns differ by unityf15,16. Noticeably, this as-

sumption eliminates the important class of transitions that No= e, cosu(z) +e,sinu(z), u(z) =qz+ ¢y, (5)
involve topologically equivalent structures with half-turn
numbers of the same parity. whereq is the twist(or pitch) wave number andb, is the

We shall also apply our theory to the case of a nonidentwist angle of the director in the middle of the cell. The
tical confining plate and show that asymmetry in the anchorconfigurations5) can be obtained as a solution of the Euler-
ing properties of the bounding surfaces results in qualitalagrange equations for the free energy functiofial pro-
tively different effects. Specifically, we find that sufficiently Vvided the invariance with respect to translations in xhg
large asymmetry in anchoring strengths will suppress th@lane is unbroken.
jumplike behavior of the twist wave numbgmwhen the free The translation invariant solutions can be complicated by
wave numbeuy varies. the presence of the out-of-plane director deviations neglected

The layout of the paper is as follows. General relationgn Ed.(5) and, in general, do not represent a helical structure.
that determine the characteristics of the helical structures i¥sSing Eq.(5) is justified only for those configurations that
CLC cells are given in Sec. II. Then in Sec. Ill we outline the are stable with respect to out-of-plane director fluctuations.
procedures that we use to study stability of the director conThe corresponding stability conditions will be derived in the
figurations. The stability analysis is performed for in-planenext section.
and out-of-plane fluctuations invariant with respect to in- \We can now substitute E¢5) into Eq. (3) to obtain the
plane translations. We study CLC cells with strong anchoringollowing expression for the rescaled free energy per unit
conditions and cases where at least one anchoring strengthagea of the director configuratid®).
finite. We formulate the stability conditions and the criterion
for the stability of the helical structures to be solely governed  (2d/Ky)F[no] = f[ne] = (qd - qod)? + 2 > WEZ)Sinzuy,
by the in-plane director fluctuations. The expressions for the v=tl
fluctuation static correlation functions are given. In Sec. IV (6)
we study the dependence of the twist wave number on the
free twisting number. Finally, in Sec. V we present our re-whereu, is the angle between the vector of easy orientation
sults and make some concluding remarks. Details of some, and the directon, at the platez=vd/2; and the dimen-
technical results are relegated to the Appendix. sionless azimuthal anchoring energy paramatg)r is pro-

portional to the ratio of the cell thicknegsand the azimuthal

Il. HELICAL STRUCTURES extrapolation Iength_g):V\/(;)/Kz:
A. Energy )
. : . w_ WYd
We consider a CLC cell of thicknesd sandwiched Wy = = C0sU,= (Ng,&)lzan:  (7)
between two parallel plates that are normal to thexis: 2K, 2Ly
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The energy(6) is of the well-known “smecticlike” form
[1] and can be conveniently rewritten in terms of the follow- 45
ing dimensionless parameters:

B=dqd-A¢, PLo=dod-Ad, a=2d-A¢ (8
by using the relations

d@-0o)=B-Br 2u,=vB+a. 9

Given the free twist parametes, the energy(6) is now a 35
function of « and the twist parametg® which characterize

the helical structuré5). The azimuthal angles of the director

at the bounding surfacesgs,=u(vd/2), can be expressed in
terms of the parametef8) andA¢ as follows: 30

! |
45 w? =100
W =2.19

40

35k /

Gi=U, +APp=(B+a)2+Ap, P_=u_=(-B+a)2. 10 12 14 10 12
(10) pim Bin

FIG. 1. The curves representing the plot of the functiafng)
B. Twist wave number and parity and y_(B) are shown as thick solid and dashed lines, respectively.
The points located at the intersection of the curves and the horizon-
tal straight liney= g, give the roots of Eq(13). The value of3; is
(10+1/2 (thin solid ling and(10+1/2 7w+ w, (thin dashed ling

Two cases are illustrated(a) wg'):wg):w¢:w/2; (b) WE;)

Bo=B+W sin(B+va), v=z1. (11)  =10.0,w}'=2.19,w,=7/2 [see Eq/(56)].

It is not difficult to show that in order for the configura-
tion to be an extremal of the free ener@) these parameters
need to satisfy the system of the following two equations:

Equivalently, this system determines the extremals as station- b ted b ing the t dental a1
ary points of the energy6) and can be derived from the can be computed by solving the transcendental equetion

condition that both energy derivatives with respectitand Fig”Fe Lillustrates the procedure of finding the roots of Eq.
£ vanish. (13) in the B-y plane.

Equation(11) can now be used to relate the parameters te Ir;g_eonera:)lzntthe(r)? tﬁ:ee hsoe\_/e(;a!{z;lolc_)ts represdertl;]id by t(_?e In-
and B through the equation rsection points rizontal ling=, an curves

v=1v,(B). Each root corresponds to the director configuration
wh) —w) whose energy can be calculated from Etg). The equilib-
W +w)’ (12) " rium director structure is then determined by the solution of
¢ Eq. (13) with the lowest energy. Other structures can be ei-
wherek is the integerk e Z, that defines the parity of the ther metastable or unstable.
configurationu=(-1).
Indeed, substituting Eq12) into Eq.(11) gives the rela-
tion betweenB, and g,

a=arctafietan 8] + 7k, e=

C. Strong anchoring limit

) However, these results cannot be applied directly to the
Bo=7u(B) = B+ pwy'sin(8 + arctaifie tan B]), case of the strong anchoring limit, whe¥éd” —x and the
w=(- 1)K (13)  boundary condition requires the director at the substzate
=vd/2 to be parallel to the corresponding easy axis,
which depends ok only through the parity. This remark also n(,d/2)]e,.
applies to the expression for the energy that after substituting \when the anchoring is strong at both substrates, it im-
the relation(12) into Eq. (6) can be recast into the form  oses restrictions on the values@fso thatq takes values
from a discrete sdftl]. This set represents the director con-

—Tw™ qi 2 (+) () _ (v)
Fu(B) =Wy sinv. ]+ (wy" +w,) '“2 Wy COSU,, figurations characterized by the paramegeand labeled by

v=tl the half-turn numbek,
(14
= -Ap=7k keZ. 1
. B=qd-A¢= 7k, € (16)
v, = B+ varctafietang]. (15) Substituting the values of from Eq. (16) into the first

term on the right hand side of E¢) will define the equi-

In Sec. IV we will find that there are different branches of librium value ofk as the integer that minimizes the distance

metastable helical configurations. Each branch is charactepetweensk and B, (=qod—A¢). The steplike dependence of

ized by the number of spiral half turns apdis the parity of 8 on S, for these equilibrium structures is depicted in Fig.

this number. For this reason, the integewill be referred to  2(a).

as the half-turn number. An experimentally important case concerns mixed bound-
Thus, we have classified the director structures by meangry conditions in which the strong anchoring limit applies to

of the parityu and the dimensionless twist paramegethat  the lower plate onlyw(d:)—mo. For brevity, this case will be
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L L B BRI I
13__[3/7: 1 (a)_' 13_ % n=ng+dNg dNg=nN1p+ny0, lﬂE(gZ), (22
12+ — 4 12r
| 11~ - where the angleg and 6 describe in-plane and out-of-plane
ur 7 [ 1  deviations of the director, respectively.
i : 10 g - _ : .
1ok : Strong anc}mrmg_ oL % . Following standard procedure, we can now expand the
T TR T e e T T T E free energy of the director fiel®0) up to second order terms
in the fluctuation fieldys and its derivatives,
Tt T T T T T T TTTT (LA DL R R I B
i 1 ~ @
130 g/ //(c) 1 Bl pnm // (@] FIn] = Flno] + FL¢], (23
12+ - 12 u
ub < . i ] @rgl= | @ 2
101 /Vé:/%:m . of // Wy = 0.05m Pl fv ol * El =2 wWiwds (24
I -7 1 10F . -
9, L1 [ . s . \ . iati ) i
s ; 10 TRE 1'3 = 1'0 TEEE 1'3 = The second order variation of the free enef§[] is a

B/n B /m bilinear functional which represents the energy of the direc-
! 0 tor fluctuations written in the harmoni&Gaussiain approxi-
FIG. 2. Dependence of the twist paramegérqd-Ag) on the ~ Mation. From Eqs(1)«3) we obtain expressions for the den-
free twisting parameteBy(=qod—A¢) at V\/_ \/\I<+ =W, for vari-  sities that enter the fluctuation energ4):
ous values of the dimensionless a2|muthal anchorlng parameter,(2) 2 2 2
w4(=W,d/2K,): (a) strong anchoring limitw,— =, discussed in 25 (] = Ky(V1 + V20)° + Ka(V10 = V) + K3 (Vo)
Sec. Il C; (b) wy=; (c) w,=m/2; (d) w,=0.057. Discussion of +(V00)?] +qKq[20VO¢+q.92], (25)
the casegb)—(d) can be found in Sec. IV A.
2W2 () = W, 67 cos 2, + W, ¢ = 20K 540V 1 Sy,
referred to as semistrong anchoring. Now the relatidr®y (26)
and(13) reduce to
whereV;=(n;, V).

a= B+ 27Kk, (17 In what follows we shall restrict our consideration to the
case of fluctuations invariant with respect to in-plane trans-
ﬁozﬂ+wﬁ;)sin(2/3) (19) lations, so thaiy= ys(z). This assumption, although restrict-

ing applicability of our results, allows us to avoid complica-

and the energy of the helical structurdg) is now given by  tions introduced by inhomogeneity of the helical structure
(5). In this case the fluctuation energy per unit area is

f(8) =[w’sin(28)1? + 2w} sir?. (19 a2 i
o . N . FOlylis= | ¢'Kepdzt 2 Q" myan, (27)
Interestingly, in the semistrong anchoring limit, the parity of -di2 v=£1
half turns, u, does not enter either the ener¢}9) or the ) -
relation (18). whereS is the area of the substrate. The operdfois the

differential matrix operator that enters the linearized Euler-

Lagrange equations for the director distributi@b), i.e.,
I1l. STABILITY OF HELICAL STRUCTURES

. . N Kep=0. 28
In this section we present the results on stability of the v (28)

helical configurationg5). These results then will be used in The eigenvalues oK form the fluctuation spectrurfil9].
Sec. IV to eliminate unstable structures from considerationThe eigenvaluea can be computed together with the eigen-

We also give expressions for director correlation functionsmodesys, by solving the boundary-value problem:
These are in order to discuss the effects of director fluctua-

tions. K = Ny, (29
We begin with the general expression for the distorted
director field QY ¢ | =2 = 0. (30)
N=ngCOSHCOSp +Nn;coshsing+n,sing, (n,n;) =3, The expressions fak andQ are given by
(20 L[ Kyd? 0
K= 5 (31

where the vectors; andn, are 0 —Ky+0’K,

-e,sinu(2) +e,cosu(z), n,=e,. (21) o (Kzaz 0 ) . (V\/;) cosa, O ) 2

=y "

For small anglesp and 6 linearization of Eq.(20) gives the 0 Kid 0 W(G
perturbed director field in the familiar form andKq is the effective elastic constant

031704-4



TWIST OF CHOLESTERIC LIQUID CRYSTAL CELLS.. PHYSICAL REVIEW E 71, 031704(2009

Kq=Ks—2K5(1 -qo/q). (33 B. Out-of-plane fluctuations

- - We now study stability of the helical structures with re-
(v)
From Eqs.(31) and(32) the operatorK and Q™ are both spect to the out-of-plane fluctuations. To this end we replace

diagonal, so that the in-plane and out-of-plane fluctuation : 2 . :
are statistically independent and can be treated separatelyz nv(;”(tgof flc()f/: ?n)\t:en?olrlivv\\//mg ;cgremglgenvalue proble()

A. In-plane fluctuations [&f —rg/4+\]6,(7) =0, (38)

1. Strong and semistrong anchoring

(+) —
. . - . . +0.6, + =0, 39
We begin with the limiting cases discussed in Sec. Il C [£0:00+ Wy O] e (39)

and where at least one of the bounding surfaces imposes the )
strong anchoring boundary condition. This is the case when rq=(qd)°K/Ki=(B8+A¢)[r3(B+Ad) +2ry(By— B)],

we have to use a stability criterion related to the fluctuation (40)

spectrum which requires all the eigenvalues to be positive,

A>0, so as to ensure the positive definiteness of the fluctua- )

. wWy'd  d

tion energy{19]. W =—8 - -~ (41)
It is not difficult to see that, for the strong azimuthal an- o2k a2y

choring present at both substrates, the lowest eigenvalue is
where r=2z/d, r;=K;/K,, and LS’) is the polar anchoring
Am = Ko(7/d)? (34 extrapolation length.

The stability conditionx>0 can now be readily written

and all the structures with the twist parametes) are locally
as follows:

stable with respect to in-plane fluctuations.
For the semistrong anchoring with’,) — o, this is no It >0 (42)
longer the case. The stability condition is now given by mean

+ where\,, is the lowest eigenvalue of the problei®8) and
1+ 2w cog2) > 0. 39 (39 computed at,=0. ’ ’

From Eq.(18) this condition requires the free twist param-  When the polar anchoring is strong at both substrates,
eter By to be an increasing function of the twist parameger vaf)—wo, the eigenvalua.,, is known(see remark at the end

It is derived in the Appendiksee Eq(A11) with w, replaced  of the Appendix:

y W, cos28)] Am= (k)2 = 72/4. (43)

2. Weak anchoring Otherwise k., is below/2 and can be computed as the root

We have a somewhat different situation when the azi-of the transcendental equation deduced in the Appefrsdiz
muthal anchoring strength is finite at both substrates. In thi&q. (A12)],
case the stability conditions can be derived using an alterna-
tive procedurg19]. The procedure involves two steps) D (k) = (Wi Wiy = i )sin 2 + Kin(Wy” + W) cos 2y
solving the linearized Euler-Lagrange equatia®8); and(b) -0, (44)
substituting the general solution into the expression for the
fluctuation energy(27). The last step gives the ener@®7)  where 0< k< /2.
expressed in terms of the integration constants, so that the
stability conditions can be derived as conditions for this ex- 1. Strong anchoring
pression to be positive definite.

Following this procedure, we can obtain the stability con-
ditions for the helical structures characterized by the parity
and the twist paramete® related to the free twist parameter
B through the relatior{13). The final result is

In the strong anchoring limit, Eq16) implies that the
values of the twist parametg® are quantized and do not
depend on the free twist parameigy. Unstable configura-
tions are characterized by twist wave numbers violating the
stability condition (42) with \,, given in Eq.(43). These

H,=A,+2w;w(’ cosv, cosv_ >0, (36)  wave numbers are described by the inequalities

A, = n(w cosv, +w};) cosv_) >0, (37) UB.<1B<1B,, B=qdm By=qedm,
where v, are defined in Eq(15). These inequalities also 1/731, =- r2730 * [(rzfa’o)z +2r,— 32 (45)
follow immediately from the stability condition6A10) ob-
tained in the Appendix by putting. = uw'* cosu,. These inequalities yield two different sets of unstable struc-

Violating any one of Eqs(35)—(37) will result in instabil-  tures depending on the sign of the differert2i,-Ks). For
ity caused by slippage of the director in the plane of thedo=0 these sets are given by
spiral. Such an instability cannot occur when the azimuthal _ _
anchoring is strong at both substrates. q= (w/d)|B, orqs=-(a/d)|B|, 2K,>Kj;, (46)
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— (md)|B] < q = - (w/d)| 3| of the operatorK defined in Eq.(31) by solving the
JE— boundary-value problem
at qOZ W/(drz)vrg_zrz, K3>2K2

(47) KG(z,2) =8z~ 2, (50)

Equation(46) shows that, when the energy cost of bend is 2 ) ) _
relatively small, there are an infinite number of unstable con- Q"G(z,2) =02 =0, (51)

figurations and the configuration loses its stability as the_ dls\'/vherei is the identity matrix and the operat@(”) is given
tance between its wave numbgrand q, becomes suffi-

ciently large. in Eqg. (32). Since the matrix operatorfs and Q(") are both

Otherwise, unstable configurations may appear only if th&liagonal, the correlation functiof9) is also diagonal:
free wave numbeq, exceeds its critical value given in Eq. (B2 B(2)) 0
(47). In this case the number of the unstable configurations is (P(2Dh(Z')) = ( , ) (52)
finite. From EQ.(47) there is no unstable configuration for 0 (02)0'))

nfamatic liquid crystals witlyp=0. This result has been pre-  golving the boundary-value proble(0) and (51) yields
viously reported in Ref{20]. the following expressions for the in-plane and the out-of-

2. Weak anchoring plane components of the correlation functi@®):

We now pass on to the case where the strengths of an-< 02)0(2)) = kgTd
choringV\/i) are not infinitely large. By contrast to the case 2SK;kD(k)
of strong anchoring, the twist parametgsand 3, are now )/
not independent. Rather we have the stationarity condition X(1+2z/d)][wy"(sin x)(1 - 2z./d)

[W(g")(sin k)(1+ 2z_/d) + k(cosk)

(13) relating B8 and B,. In addition, if the polar anchoring is + k(cosk)(1 - 2z./d)], (53
also not infinitely strong, the eigenvalig, can be consider-
ably reduced. keTd

In these circumstances, it is reasonable to approximate the ($(2)(z')) = 2SKH [1+p(l+ 2z</d)wg> cosv_]
left hand side of the stability conditiofd2) by its lower 2
bound derived in the limit of weak polar anchoringf,’ X [1+u(1 - 2z./d)w}; cosv,], (54)

0, wherex ish. Technically, th Iti diti .
— %, Whereim vanish. fechnically, the restiting condition wherek?=-r4/4, z.=min{z,z'}, z.=maxz,z'}, andD(«)

r(B,w) = (B+AP)[2r,8(B, ) + (r3—2r) B+r3A¢] >0 andH, are defined in Eq(44) and Eq.(36), respectively.
(48) The correlation functions diverge on approaching the bound-
ary of the stability region. For out-of-plane fluctuations, the
is sufficient but not necessary for stability. Thus, when thedenominator of the expression f#(z)6(z’')) vanishes in the
inequality (48) is satisfied, the structure will certainly be lo- |imit of marginal stability where t,/4— \y=kmy and D(x)
cally stable with respect to out-of-plane fluctuations what-_, D(k,,)=0. Similarly, Eq.(36) shows that, in the marginal
ever the polar anchoring is. stability limit for in-plane fluctuationst,, goes to zero thus

Equation(48) can now be used to study out-of-plane fluc- rendering the correlation functioip(z)¢(z')) divergent.
tuation induced instability of the helical structures which are

otherwise stable with respect to in-plane fluctuations and

thus meet the stability conditior(86) and (37). For A¢=0 IV. TRANSITIONS INDUCED BY FREE WAVE NUMBER
and positive twist wave numbers, such instabilty may occur VARIATIONS

only if the doubled twist elastic constant exceeds the bend
elastic constant, ,>Ks, and the azimuthal anchoring en-

ergy is sufficiently large. In this case, howeveg, can be ) :
made non-negative by increasing the value of the free twis9Ut'0.ffplane fluctuatlons. We have found ‘h?‘t the anchqung
conditions play a crucial role in the calculations. In particu-

parametefs,. In other words, if the ratio of the cell thickness | lls with st hori dth ith what we h
and the equilibrium CLC pitch is large enough to meet the'@r: CEIIS With strong anchoring and those with what we have

condition (48) we can neglect out-of-plane deviations of the called semistrong anchoring exhibit significantly different

director and use the “smecticlike” free ener@. properties. .
In this section we concentrate on the weak anchoring

C. Correlation functions cases. We have shown that in this case helical structures are
characterized by the twist paramef@and the half-turn par-
ity . These quantities are related to the free twist parameter
Bo through the stationary point equatioh3). The structure

keT responds to variations of the free wave numfaard thus the

(WD) = ?G(Z,Z’), (49)  free twist parameterby changing its twist parameter.
This change may render the initially equilibrium structure

wherekg is the Boltzmann constant afdis the temperature. either metastable or unstable. When the anchoring is not in-
The Green functiorG(z,z') can be computed as the inverse finitely strong and the free twist parameter is large enough to

In the previous section we have studied the stability of the
CLC helical structure$5) with respect to both in-plane and

Our calculations of the director fluctuation static correla-
tion function{(y(2)y(z')) use the relatiof19]
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meet the stability conditior{48), this instability is solely
governed by in-plane director fluctuations and defines the®[
mechanism dominating transformations of the director field.
This mechanism is suppressed in the strong anchoring res
gime, where the structural transitions involve tilted configu-
rations [20], and can be described as director slippage4
through the energy barriers formed by the surface potentials |
In this section our task is to study helical structure trans- 3
formations as a function of the free twist wave numtyefor
different anchoring conditions. Equivalently, we focus our
attention on the dependence @fon B,; this can be thought
of as a sort of dispersion relation. To this end we examine in1 B
more detail the consequences of the analytical results ob
tained in the previous sections, Secs. Il and Il I

09 11 13

B/
A. Symmetric cells
. FIG. 3. The free energy, (solid line) and f_ (dashed ling of

XV_henﬂtie anchoring .strengths at b.Oth substrates ar? equ@{able configurations with the half-turn numbebetween 10 and
W¢ —W(¢ =W,, the right hand side of Eq.13) is 14 as a function off, computed from Eq(14) by using Eq(13) for
Brwysin B (w,=W,d/2K,) andv.=B. In this case the sta- two values of the anchoring energy parametéssw,,=/2; and
bility of the configurations is governed by E(7) which  (b) w,=. The intersection point of the branches wkth10 and 11
reduces to the simple inequaligycoss>0. at 8,=10.57 is indicated by a circle. Squares mark energy of the

It immediately follows that the values @8 representing structures at the transition point wiiy=117 where the configu-
the locally stable structures of the parjtyranged between ration withk=10 loses its stability. It is shown that the energy of the
(k=1/2)7r and (k+1/2)m, wherek is the even(odd) integer  helical structure wittk=10(k=11) increasegdecreasgsas 3, var-
at u=+1(u=-1). The integerk will be referred to as the ies from 10.5r to 11
half-turn number. The parity. introduced in Sec. Il is now
shown to be the parity of the half-turn numbgr=(-1)k.

The intervals of B8 for the stable configuration$(k
-1/2),(k+1/2)7] are now labeled by the half-turn number
k. Since the functiony,, [ 1=(-1)¥] monotonically increases
on the interval characterized by the half-turn numkethe

Form=10, Figs. 8a) and 4a) show that the initially equi-
librium structure with the half-turn numbér=10 (solid line)
becomes metastable @5 passes through the critical point
Bo=(1/2+m)7r at which the structures witk=10 and 11
(dashed lingare degenerate in energy. In Figéa)3and 4a)

value of 8, runs from(k—-1/2)7-w,, to (k+1/2)m+w, on 8 —— 35— ,
this interval. As a result, for each half-turn numikethere is @ w =121 Ff ) w‘j: 10.0
a monotonically increasing branch of tigé3,) curve. 7 ¢ 41 30k wh= 2.19
The branches wittk ranged from 10 to 13 for different [/ " L o T
values of the dimensionless anchoring energy parameger 6F ! / T o2k /V\ (VA M
are depicted in Figs.(B)—2(d). We see that thegg, depen- 5 L \
dence ofB will always be discontinuous provided the an- 201 ! / ‘
choring energy is not equal to zero. Figur@)2shows that 4 L _
the jumps tend to disappear in the limit of weak anchoring, 1 15k 2AB/m i

where the azimuthal anchoring energy approaches zejo, 3
—0. i
As we pointed out in Sec. Il C for the case of strong 2
anchoring, there are two equilibrium structures of the same
energy atB,=(1/2+m)w. In Fig. 2a) the arrows indicate |
that the half-turn number of the equilibrium structure
changes at these points.
Similarly, when the anchoring is wealy, <, and g,
=(1/2+m)m, Eq'_(13) possesses t_WO different roots wikh FIG. 4. The free energy, (solid line) and f_ (dashed ling of
=m andm+1 which are equally distant from; and are of e configurations with the half-turn numbebetween 10 and 14 as
equal energy. In Fig.(3), the free energy14) is shown as a 5 function of 8 computed from Eq(14). Thin lines represent the
function of B,. It can be seen that the intersection points ofgnergy of unstable configurations. Two cases are shéan!”
the curves for different paritiegsolid and dashed lines in =W<+>=W¢=w/2; and (b)) w'=10.0,w"'=2.19 (¢=5.6 andv(\j/)(,,
Fig. 3 are indeed aBy=(1/2+m)m. The parity of the equi- =/2). Circles and squares label energy of the structuregat
librium configuration reverses g goes through the values =10.57 and 11 shown in Fig. 8a). At 8,=10.5m, the structures
(1/2+m)7r. Figure 3b) illustrates that this is also the case with k=10 and 11 are shown to be degenerate in energy and sepa-
even ifw,= . rated by the energy barriexf.

12
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— T T T 6—T——T T and we have the bistability effect at the critical point under
i //(a) 1 I — ) 1 For m<w,<3w/2 there are three configurations: the ini-
12~ j =7 1 12t — . tial configurationg,, the metastable configuratigsy,;, and
— e &M%- T el b 287 | the equilibrium structurgg,,,. The configuratiors,,; being
= 4 wefFEsE T . - i ; ilibri
W =——"" t = formed atw,=37/2 will define the equilibrium structure at
L | I | ) | L [ . | L 1 L | L 1
8§ 10 12 14 16 10 12 12 15 2m=Wy=3mandso on. N _ ®
The general result for the critical poif,=4," can be
16_ I ] 16_ /' T ] summarized as follows. Wheti+1/2)7<w,<(1+3/2)m,
ukpm  o=10 1 4k P c=05 ] in addition to the marginally stable configuratigh, there
L | L | are |+2 stable configurations with the half-turn numbers
12 © 1 Br @ ranged fromk+1 to k+I+2. The half-turn number of the
- 1 - 1 equilibrium  structure equalsk+l+1 under l7<w,<(l
101 4 10} = +1)
| 1 | 1 | | L | 1 | .
10 12 14 10 12 14 It immediately follows that the restrictiomv, <7 im-
By/m Bym posed by Belyakov and Kaf45] on the anchoring strength

_ requires the relaxation transitions to involve only two struc-
FIG. 5. Dependence g on B calculated aw.=10.0 for vari- - tyres with|Ak|=1. Our result shows that, when the anchoring
ous values of the parametes§=2w, W(g)/ (W, -w,, )] and Wy parameterw,, falls betweenls and (I+1), the half-turn
[see Eq.(56)]: (3)) wy=m(0=11.8 andw +)=3-705; (b) wy=m/2 nymber change ig\k|=1+1 for the transitions between mar-
(0=5.6 and w;'=2.19; (¢) o=1.0w, =w.=0.478; (d) o  ginaglly stable and the equilibrium states. Clearly, we can

— +)_ ” . ; :
=0.5w,"=0.25. have transitions with evemk that involve topologically

_ . Lo ) equivalent configurations with common parf1,22. Such
the structures at this point are indicated by circles. transitions may also be induced by the thermal director fluc-

~ Asis seen from the figures, relaxation to the new equilib,ations without formation of defects even if the anchoring is
rium state will require the jumplike change of the twist pa-jxfinjtely strong[20]. Though the mechanism under consid-

rameterg. In addition, the transition between the metastabley ation is rather different, neglecting the director fluctuations
and the equilibrium configurations involves penetrating the.5p, only be regarded as a zero-order approximation.
energy barrieAf that separates the states with different half- ,4eed according to our remark at the end of Sec. Ill B

turn numbers. This barrier can be seen from Fida) 8nd o expression for the fluctuation correlation functic)
4(a) where the free energil4) is plotted as a function 98y jmpies its divergence upon reaching a marginally stable

and B, respectively. state whereH ,=0. It means that taking the fluctuations into
_ Previous author$14,15,17 have supposed that the tran- 4ccqnt will give the transition points located within the sta-

sitions may occur only if there is no energy barrier. Clearly,ijity interval. This fluctuation induced shift may also sup-

this assumption implies that the jumps take place at the e”Hress the hysteresis provided the mean square angle devia-
. L . _ K _ ’ —

points of the stability intervalsBy=p8,"=(1/2+K)mtWy,  tion (¢?), computed from Eq(54) at By=(1/2+m)7 and

where the configuration with the half-turn numbebecomes  ,—,'=q/2, and the anchoring energy paramatgrare of the

marginally stablg/A,=H,=0) and loses its stability. same order.
These transitions are indicated by arrows in Figs. 2, 3, and

5. As is seen from Fig. (), in this case the upward and

backward transitionk— k+1 andk+1— k occur at different B. Asymmetric cells

values of Bg: ,B(f) and /8(_'“1): ,8(+k)—2w¢, respectively. So When the anchoring energies at the surfaces are different,
there are hysteresis loops in the response of CLC cell to thﬂ/(_)?ﬁ\/\/((;) and e# 0, sinv, on the right hand side of Eq.
change in the free twisting number. (1%) equals zero gB=m/2+wk and, as demonstrated in Fig.

We can now describe how the increase in the anchoring(b), we have additional intersection points of the curves
energy will affect the scheme of the transitions. To be spe-y,(8) andy_(). It can be shown that the stability conditions
cific, we consider the critical end poinﬁozﬂik), so that for  are now defined by Eq36) and the twist parametefsof the
small anchoring energies with, < 7/2 there are only two marginally stable configurations, wheig, =0, can be com-
configurations: the marginally stable initial configuration puted as the stationary points @f.
with 8=, and the equilibrium structure witl8=p,,4. In These points represent the local maxima and minima of
this case Eq(13) has at most two roots and the jumps will y, and are located g8=(1/2+k)w+ApB. The equation for
occur as transitions between the states whose half-turn nunxg is
bers differ by unity,|Ak|=1.

At w,=7/2, as shown in Fig. &), we have two margin- wE;’(l +€)sin(AB - e arctatie cotAB])
ally stable structures of equal energdy:and By.o. The newly
formed structures,., being metastable at/2<w,, < 7 will __ 1 + (€~ 1)cosAB
have free energy equal to the energy of the equilibrium con- 1+(e-1)cogAB’
figuration By, atw,=. So, as illustrated in Figs.(8) and
3(b), both transitionk — k+1 andk— k+2 are equiprobable whereABe[0,7/2].

(55)
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FIG. 6. Dependence oA on WE;) for various values of the
anchoring energy parametwfd:).
From the stability conditiorH,>0 the values ofg for
stable configurations fall between the stationary poiits
-1/2)7+AB and (k+1/2)7—ARB, where the half-turn num-
berk is an even(odd) integer depending on the parity. The

function y,, monotonically increases ang, varies from(k
—-1/2)m-w, to (k+1/2)m+w, on the stability interval with
the half-turn numbek. The effective dimensionless anchor-

ing parametew,,, as opposed to the case of equal anchorinq)n Bo

energies with/vff):wd,, is now given by

w, =W coAB - earctahe cotAB]) —AB.  (56)

Clearly, we can now follow the line of reasoning pre-
sented in Sec. IV A to find the results concerning hysteresis
loops and bistability effects that are quite similar to the case

of equal anchoring strengtiisee Figs. &) and §b)]. There
are, however, two important differences related to E§S)
and(56).

If AB+#0, the intervals of3 representing stable director
configurations are separated by the gap of the lengtB.2
The presence of this gap is illustrated in Fige)&and 5b).

PHYSICAL REVIEW E 71, 031704(2005

)
W

FIG. 7. Dependence ofv, on w(df) for various values of the
anchoring energy paramem%). It is shown thatw¢=w(_> at WE;)

:WE/:) andw,=0 atWE;)=WC [see Eq(59)].

¢

LY -1 =d (58)

implies that the difference between the azimuthal anchoring
extrapolation lengths is larger than the cell thickness. For
hybrid cells, a similar inequality is known as the stability
condition of homogeneous structufgs—25.

In this case the gap disappears and the dependenge of
becomes continuous in the manner indicated in Figs.
5(c) and d). Given the value OWE;) the relation(57) yields
the threshold value for the anchoring strength at the upper
substrate:

wo
W = —‘f’—(_) (59
2wy’ +
So the jumps and the gap will vanish\ﬂ+):wc. Analo-
gously, as illustrated in Fig. T, goes to zero at the critical
; (+) — i (=)
pointw =W, while for large values 0W¢ the dependence
of wy on W((;) is approximately linear.
In closing this section we discuss the limiting case of

. (—) .
Figure 4b) shows the gap between stable branches of th&mistrong anchoring whesg,’ — . For this purpose we

dependence of the free energy BnThe values of3 within

can combine the stabillity conditiof85) with Eq. (18) link-

the gap represent unstable configurations and form the zorBd the free twisting parametg, and the twist parametes

of “forbidden” states in the CLC cell.
The graph of theAB vs Wf;) dependence is presented in

Fig. 6. As expected, the gap is shown to disappear in th

limit of equal energieswg)zw("). Another and somewhat

more interesting effect is that there is a small critical value of

w' below whichAB also vanishes.

In order to interpret this effect, we note that E#j3) with
Bo=(1/2+k)7 has the only solutioB=g,, provided the azi-
muthal anchoring energy parameters meet the condition

oW

— <1.
w5 - wg)

g =

(57)

Another form of this condition

of the helical structures characterized by the enéig).
From the stability condition35) the gap separating the

stability intervals ranged betweetk—1/2)7+Ag and (k

+1/2)m—Ap is given by

|

This result also follows from E(55) in the semistrong limit
e— 1. Similarly, the expression faw,, (56) simplifies to the
following form:

arccog2w;)) ™,
01

ZWE;)>1,
2w£;)<1.

2A8 (60)

W, = Wg)sin(ZAB) - AB. (61)

Equations(60) and (61) explicitly show that the gap and
the hysteresis loops both disappear when the anchoring
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rerT T [ ' T through the anchoring energy barrier. Interestingly, a similar

L Pm | mechanism can be expected be important in trying to extend
o B the theory of Ref.[26], where shear induced melting of
12+ /(a) .

smecticA liquid crystals has been studied in the strong an-
choring limit, to the case of weak anchoring.
The part of our analysis presented in Sec. IV A relies on
the assumption that the transition between configurations
with different half-turn numbers occurs when the initial
structure loses its stability, so that the pitch wave number is
- /(” . no longer a local minimum of the free energy surface. The
w, =2.3017 result is that the stronger the anchoring, the larger the change
i of the half-turn numberand of the twist wave numbger
whk i needed to reach the equilibrium state. So, whichever mecha-
A nism of relaxation is assumed, the metastable states certainly
9 10 11 12 13 14 play an important part in the problem when the anchoring is
By/m By/m not too weak.
. ) . o It was recently shown by Bisit al.[27] that the instabil-
FIG. 8. Twist parametep as a function offi in the limit of ity mechanism in twisted nematics may involve the so-called
semistrong anchoringw,,” —. Two cases are Showr(f})) W, eigenvalue exchange configuratidi8,29. These configu-
=2.3017>0.5 with wy=m/2 [see Eq.(61)]; and (b) w, =04  rations and the tilted structures are, however, of minor im-
<0.5. portance for the director slippage induced instability. They
may be important outside the parameter regime considered
strength is sufficiently small andvx%fkl. In other words, here, and we will discuss alternative mechanisms in more

when the inequality detail elsewhere.
) The dynamics of the transitions is well beyond the scope
Ly =d (62) of this paper. Despite some very recent progf&§s, it still

is satisfied, the discontinuities turn out to be suppressed. "emains a challenge to develop a tractable theory that prop-
Thus, in asymmetric CLC cells, the left hand side of Eqs.€"y account for director fluctuations, hydrodynamic modes,
(58) and (62) define the critical cell thickness below which and defect formation. Simultaneously we have seen at the
the B vs 3, curve becomes continuous. For semistrong an&nd of Sec. IV A that fluctuation effects can be estimated by
choring, this effect can be seen from the curves shown it/SINg the expression for the correlation ﬂ_mctpns given in
Fig. 8. Sec. Il C. But in order to take the fluctuations into consid-
eration a systematic treatment is required.

V. DISCUSSION AND CONCLUSIONS

In this paper we have studied how the pitch wave number ACKNOWLEDGMENTS

g of the helical director configuration in the CLC cell de-  This work was partially carried out in the framework of a
pends on the free twisting numbeg at different anchoring U.K.-Ukraine joint project funded by the Royal Society.
conditions imposed by the cell substrates. It is found that thig.J.S. is grateful to V. A. Belyakov and E. I. Kats for useful
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by the presence of hysteresis and bistability. evant papers before publication. A.D.K. thanks the School of
We have shown that asymmetry in the strengths of theviathematics in the University of Southampton for hospital-
director anchoring with the substrates introduces the followity during his visits to the U.K. We are also grateful to Pro-
ing new effects(a) the jumplike behavior of the twist wave fessor V. Yu. Reshetnyak for facilitating and encouraging our
number is suppressed when the difference between the azellaboration.
muthal anchoring extrapolation lengths is larger than the cell
thickness;(b) the twist wave number intervals of locally

stable configurations with adjacent numbers of helix half APPENDIX: FLUCTUATION SPECTRUM
turns are separated by a gap in which the structures are un- AND STABILITY CONDITIONS
stable.

Using stability analysis we have emphasized the idea tha\;tv rilt?e;hlifw E;pfl?) rerrr;]dgr;/]\?;;:?gn IrEn esrgéé;natnhde(gé?envalue problem
the instability mechanism behind the transitions between the q '

helical structures is dominated by the in-plane director fluc- [(9§+ X (1) =0, (A1)
tuations. These fluctuations may render the structures un-
stable only if the anchoring energy is finite. [+0.X, + WX, ] =0, (A2)

In this case the height of the energy barriers separating the
CLC states in the space of in-plane variables is determinedhere\ is the eigenvalue an¥,(7) is the eigenfunction. Our
by the surface potentials and is also finite. The mechanisrtask is to derive the conditions that ensure positive definite-
can, therefore, be described as slippage of the directaness of the eigenvalues.
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To this end we consider the case of negative eigenvalues f(x) = x°+ axcothx=b, (A7)

with A=—«? and substitute the general solution of F41), _
wherex= 2k, a=2(w,+w_), andb=-4w,w_. It is now not

Xy(7) = A\ sinhk7+ B, coshkr, (A3)  difficult to see that the inequality
into the boundary condition§A2). This yields a homoge- b < minf(x) = min(x? + ax cothx) (A8)
neous system of two linear algebraic equations for the inter- x=0 x=0

gration constant#\, andB,. The system can be written in

. provides the condition for the eigenvalues to be positive.
matrix form as follows:

Equation(A8) combined with the relatiol>-a?/4 can

y .<A)\> _ <O> ) be analyzed using elementary methods. The final result
B, 0/’ b<a, a>0 (A9)
where immediately leads to the inequalities
_( x coshk +w,sinh k KSinhK+W+COShK> W, +W_+2w,w_ >0, w,+w_>0, (A10)
-\~ kcoshk—w_sinhk  «sinhx+w_coshk /)’ which ensure positive definiteness of the spectrum. In the

(A5) semistrong limit,w_— oo, the conditions(A10) assume the

) ) ] ) following simplified form:
Nonzero solutions of EqA4) exist only if the determinant

of the coefficient matrixd vanishes, det =0. For the ma- 1+2w,>0. (A11)

trix (AS), this yields a transcendental equation Our final remark is that changingto i« in Eq. (A6) gives

K%sinh 2 + (w, +W_) k cosh Z +w,w_sinh 2« = 0 the equation
(A6) (W,W_ — k2)sin 2« + (W, + W_)k c0s 2« =0. (A12)
whose roots determine the negative eigenvalues through thEnhe roots of this equation determine positive eigenvalues

relation\ =—«2. =«?. In the strong anchoring limity, — o, Eq. (A12) takes
Equation(A6) can be conveniently recast into the form the well-known form sin 2=0 leading to the relatio43).

[1] P. G. de Gennes and J. Proshe Physics of Liquid Crystals [15] V. A. Belyakov and E. I. Kats, JETP1, 488 (2000.

(Clarendon Press, Oxford, 1993 [16] V. A. Belyakov, P. Oswald, and E. I. Kats, JET®6, 915
[2] A. B. Harris, R. D. Kamien, and T. C. Lubensky, Rev. Mod. (2003.
Phys. 71, 1745(1999. [17] S. P. Palto, JETPL21, 308 (2002 (in Russiai.

[3] A. B. Harris, R. D. Kamien, and T. C. Lubensky, Phys. Rev. [18] A. Rapini and M. Papoular, J. Phy®arig, Collog. 30, C4-54
Lett. 78, 1476(1997). (1969

[4] T. C. Lubensky, A. B. Harris, R. D. Kamien, and G. Yan, [19] A. D. Kiselev, Phys. Rev. E59, 041701(2004.

Ferroelectrics212, 1 (1997.
[5] A. V. Emelyanenko, M. A. Osipov, and D. A. Dunmur, Phys. [20] P. Goldbart and P. Ao, Phys. Rev. Le@4, 910 (1990.

Rev. E 62, 2340(2000. [21] M. Kléman, Rep. Prog. Phy$2, 555(1989.
[6] A. V. Emelyanenko, Phys. Rev. B7, 031704(2003. [22] P. Oswald, J. Baudry, and S. Pirkl, Phys. R887, 67 (2000.
[7] D. W. Berreman and W. R. Heffner, J. Appl. Phys2, 3032  [23] G. Barbero and R. Barberi, J. PhyErance 44, 609 (1983.
(19812). [24] A. Sparavigna, O. D. Lavrentovich, and A. Strigazzi, Phys.
[8] Z. L. Xie and H. S. Kwok, J. Appl. Phys84, 77 (1998. Rev. E 49, 1344(1994).
[9] Z. Zhuang, Y. J. Kim, and J. S. Patel, Appl. Phys. Létg, [25] P. Ziherl, F. K. P. Haddadan, R. Podgornik, and S. Zumer,
3008(1999. Phys. Rev. E61, 5361(2000.
[10] Z. L. Xie, Y. M. Dong, S. Y. Xu, H. J. Gao, and H. S. Kwok, [26] N. J. Mottram, T. J. Sluckin, S. J. Elston, and M. J. Towler,
J. Appl. Phys.87, 2673(2000. Phys. Rev. E62, 5064 (2000.
[11] F. S. Y. Fion and H. S. Kwok, Appl. Phys. LetB3, 4291  [27] F. Bisi, J. E. C. Gartland, R. Rosso, and E. G. Virga, Phys. Rev.
(2003. E 68, 021707(2003.
[12] I. P. Pinkevich, V. Y. Reshetnyak, Y. A. Reznikov, and L. G. [28] N. Schopohl and T. J. Sluckin, Phys. Rev. LeB9, 2582
Grechko, Mol. Cryst. Lig. Cryst. Sci. Technol., Sect. 222 (1987.
269(1992. [29] P. Palffy-Muhoray, E. C. Gartland, and J. R. Kelly, Lig. Cryst.
[13] H. Zink and V. A. Belyakov, JETR85, 285 (1997). 16, 713(1994).
[14] H. Zink and V. A. Belyakov, Mol. Cryst. Lig. Cryst. Sci. Tech- [30] V. A. Belyakov, I. W. Stewart, and M. A. Osipov, JET#9, 73
nol., Sect. A329 457(1999. (2004.

031704-11



