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We consider helical configurations of a cholesteric liquid crystalsCLCd sandwiched between two substrates
with homogeneous director orientation favored at both confining plates. We study the CLC twist wave number
q characterizing the helical structures in relation to the free twisting numberq0 which determines the equilib-
rium value of CLC pitchP0=2p /q0. We investigate the instability mechanism underlying transitions between
helical structures with different spiral half-turn numbers. Stability analysis shows that for equal finite anchoring
strengths this mechanism can be dominated by in-plane director fluctuations. In this case the metastable helical
configurations are separated by the energy barriers and the transitions can be described as the director slippage
through these barriers. We extend our analysis to the case of an asymmetric CLC cell in which the anchoring
strengths at the two substrates are different. The asymmetry introduces two qualitatively different effects:sad
the intervals of twist wave numbers representing locally stable configurations with adjacent helix half-turn
numbers are now separated by instability gaps; andsbd sufficiently large asymmetry, when the difference
between azimuthal anchoring extrapolation lengths exceeds the thickness of the cell, will suppress the jumplike
behavior of the twist wave number.
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I. INTRODUCTION

In equilibrium cholesteric phase molecules of a liquid
crystalsLCd align on average along a local unit directornsr d
that rotates in a helical fashion about a uniform twist axis
f1g. This tendency of cholesteric liquid crystalssCLCsd to
form helical twisting patterns is caused by the presence of
anisotropic molecules with no mirror plane—so-called chiral
moleculessseef2g for a recent reviewd.

The phenomenology of CLCs can be explained in terms
of the Frank free energy density

fbfng =
1

2
hK1s= ·nd2 + K2fn · = 3 n + q0g2

+ K3fn 3 s= 3 ndg2 − K24 divfn div n + n

3 s= 3 ndgj, s1d

where K1, K2, K3, and K24 are the splay, twist, bend, and
saddle-splay Frank elastic constants. As an immediate con-
sequence of the broken mirror symmetry, the expression for
the bulk free energys1d contains a chiral term proportional to
the equilibrium value of the CLC twist wave numberq0.

The parameterq0, which will be referred to as the free
twist wave number or as the free twisting number, gives the
equilibrium helical pitchP0;2p /q0. For the twist axis di-
rected along the z direction, the director field n̂
=scosq0z,sinq0z,0d then defines the equilibrium configura-
tion in an unbounded CLC. Periodicity of the spiral is given

by the half pitchP0/2, becausen̂ and −n̂ are equivalent in
liquid crystals,

Typically, the pitchP0 can vary from hundreds of nanom-
eters to many micrometers or more, depending on the sys-
tem. The macroscopic chiral parameterh=q0K2 sand thus the
pitchd is determined by microscopic intermolecular torques
f3,4g and depends on the molecular chirality of CLC con-
stituent mesogens. The microscopic calculations of the chiral
parameter are complicated as it is necessary to go beyond the
mean-field approach and to take into account biaxial corre-
lations f2g. Despite recent progressf5,6g, this problem has
not been resolved completely yet.

In this paper we are primarily concerned with orienta-
tional structures in planar CLC cells bounded by two parallel
substrates. Director configurations in such cells are strongly
affected by the anchoring conditions at the boundary surfaces
which break the translational symmetry along the twisting
axis. So, in general, the helical form of the director field will
be distorted.

Nevertheless, when the anchoring conditions are planar
and out-of-plane deviations of the director are suppressed, it
might be expected that the configurations still have the form
of the ideal helical structure. But, by contrast with the case of
unbounded CLCs, the helix twist wave numberq will now
differ from q0.

It has long been known that a mismatch between the equi-
librium pitch P0 and the twist imposed by the boundary con-
ditions may produce two metastable twisting states that are
degenerate in energy and can be switched either way by ap-
plying an electric fieldf7g. This bistability underlines the
mode of operation of bistable liquid crystal devices—the so-
called bistable twisted nematics—that have attracted consid-
erable attention over past few decadesf8–11g.

More generally the metastable twisting states in CLC cells
appear as a result of interplay between the bulk and the sur-

*Email address: kisel@mail.cn.ua
†Email address: t.j.sluckin@maths.soton.ac.uk

PHYSICAL REVIEW E 71, 031704s2005d

1539-3755/2005/71s3d/031704s11d/$23.00 ©2005 The American Physical Society031704-1



face contributions to the free energy giving rise to multiple
local minima of the energy. The purpose of this paper is to
explore the multiple minima and their consequences.

The free twisting numberq0 and the anchoring energy are
among the factors that govern the properties of the multiple
minima representing metastable states. Specifically, varying
q0 will change the twist wave number of the twisting state,q.
This may result in sharp transitions between different
branches of metastable states. The dependence of the twist
wave numberq on the free twisting numberq0 is then dis-
continuous. As far as we are aware, attention was first drawn
to this phenomenon by Pinkevichet al. f12g.

These discontinuities are accompanied by a variety of
physical manifestations which have been the subject of much
recent important research. One such is a jumplike functional
dependence of selective light transmission spectra on tem-
perature as a result of a temperature-dependent cholesteric
pitch, examined by Zink and Belyakovf13,14g. More re-
cently Belyakovet al. f15,16g and Paltof17g have discussed
different mechanisms behind temperature variations of the
pitch in CLC cells and hysteresis phenomena.

In this paper we adapt a systematic approach and study
the helical structures using stability analysis. This approach
enables us to go beyond the previous work by relaxing a
number of constraints. One of these requires anchoring to be
sufficiently weakswhere “sufficiently” will be discussed fur-
ther belowd, so that the jumps may occur only due to transi-
tions between the helical configurations whose numbers of
spiral half turns differ by unityf15,16g. Noticeably, this as-
sumption eliminates the important class of transitions that
involve topologically equivalent structures with half-turn
numbers of the same parity.

We shall also apply our theory to the case of a noniden-
tical confining plate and show that asymmetry in the anchor-
ing properties of the bounding surfaces results in qualita-
tively different effects. Specifically, we find that sufficiently
large asymmetry in anchoring strengths will suppress the
jumplike behavior of the twist wave numberq when the free
wave numberq0 varies.

The layout of the paper is as follows. General relations
that determine the characteristics of the helical structures in
CLC cells are given in Sec. II. Then in Sec. III we outline the
procedures that we use to study stability of the director con-
figurations. The stability analysis is performed for in-plane
and out-of-plane fluctuations invariant with respect to in-
plane translations. We study CLC cells with strong anchoring
conditions and cases where at least one anchoring strength is
finite. We formulate the stability conditions and the criterion
for the stability of the helical structures to be solely governed
by the in-plane director fluctuations. The expressions for the
fluctuation static correlation functions are given. In Sec. IV
we study the dependence of the twist wave number on the
free twisting number. Finally, in Sec. V we present our re-
sults and make some concluding remarks. Details of some
technical results are relegated to the Appendix.

II. HELICAL STRUCTURES

A. Energy

We consider a CLC cell of thicknessd sandwiched
between two parallel plates that are normal to thez axis:

z=−d/2 andd/2. Anchoring conditions at both substrates are
planar with the preferred orientation of CLC molecules at the
lower and upper plates defined by the two vectors of easy
orientation:ê− and ê+. These vectors are given by

e− = ex, e+ = ex cosDf + ey sinDf, s2d

whereDf is the twist angle imposed by the boundary con-
ditions.

We shall also write the elastic free energy as the sum of
the bulk and surface contributions,

Ffng =E
V

fbfngdv + o
n=±1

E
z=nd/2

Wnsndds, s3d

and assume that both the polar and the azimuthal contribu-
tions to the anchoring energyWnsnd can be taken in the form
of the Rapini-Papoular potentialf18g

Wnsnd =
Wf

snd

2
f1 − sn,end2gz=nd/2 +

Wu
snd

2
f1 − sn,ezd2gz=nd/2,

s4d

whereWf
s±d and Wu

s±d are the azimuthal and polar anchoring
strengths.

The CLC helical director structures take the following
spiral form:

n0 = ex cosuszd + ey sinuszd, uszd = qz+ f0, s5d

whereq is the twist sor pitchd wave number andf0 is the
twist angle of the director in the middle of the cell. The
configurationss5d can be obtained as a solution of the Euler-
Lagrange equations for the free energy functionals1d pro-
vided the invariance with respect to translations in thex-y
plane is unbroken.

The translation invariant solutions can be complicated by
the presence of the out-of-plane director deviations neglected
in Eq. s5d and, in general, do not represent a helical structure.
Using Eq.s5d is justified only for those configurations that
are stable with respect to out-of-plane director fluctuations.
The corresponding stability conditions will be derived in the
next section.

We can now substitute Eq.s5d into Eq. s3d to obtain the
following expression for the rescaled free energy per unit
area of the director configurations5d.

s2d/K2dFfn0g ; ffn0g = sqd− q0dd2 + 2 o
n=±1

wf
sndsin2un,

s6d

whereun is the angle between the vector of easy orientation
en and the directorn0 at the platez=nd/2; and the dimen-
sionless azimuthal anchoring energy parameterwf

snd is pro-
portional to the ratio of the cell thicknessd and the azimuthal
extrapolation lengthLf

snd=Wf
snd /K2:

wf
snd ;

Wf
sndd

2K2
=

d

2Lf
snd , cosun ; usn0,enduz=nd/2. s7d
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The energys6d is of the well-known “smecticlike” form
f1g and can be conveniently rewritten in terms of the follow-
ing dimensionless parameters:

b = qd− Df, b0 = q0d − Df, a = 2f0 − Df s8d

by using the relations

dsq − q0d = b − b0, 2un = nb + a. s9d

Given the free twist parameterb0 the energys6d is now a
function of a and the twist parameterb which characterize
the helical structures5d. The azimuthal angles of the director
at the bounding surfaces,fn=usnd/2d, can be expressed in
terms of the parameterss8d andDf as follows:

f+ = u+ + Df = sb + ad/2 + Df, f− = u− = s− b + ad/2.

s10d

B. Twist wave number and parity

It is not difficult to show that in order for the configura-
tion to be an extremal of the free energys3d these parameters
need to satisfy the system of the following two equations:

b0 = b + wf
snd sinsb + nad, n = ± 1. s11d

Equivalently, this system determines the extremals as station-
ary points of the energys6d and can be derived from the
condition that both energy derivatives with respect toa and
b vanish.

Equations11d can now be used to relate the parametersa
andb through the equation

a = arctanfe tanbg + pk, e ;
wf

s−d − wf
s+d

wf
s−d + wf

s+d , s12d

wherek is the integer,kPZ, that defines the parity of the
configurationm=s−1dk.

Indeed, substituting Eq.s12d into Eq. s11d gives the rela-
tion betweenb0 andb,

b0 = gmsbd ; b + mwf
s+dsinsb + arctanfe tanbgd,

m = s− 1dk, s13d

which depends onk only through the parity. This remark also
applies to the expression for the energy that after substituting
the relations12d into Eq. s6d can be recast into the form

fmsbd = fwf
s+d sinv+g2 + swf

s+d + wf
s−dd − m o

n=±1
wf

snd cosvn,

s14d

where

vn = b + n arctanfe tanbg. s15d

In Sec. IV we will find that there are different branches of
metastable helical configurations. Each branch is character-
ized by the number of spiral half turns andm is the parity of
this number. For this reason, the integerk will be referred to
as the half-turn number.

Thus, we have classified the director structures by means
of the paritym and the dimensionless twist parameterb that

can be computed by solving the transcendental equations13d.
Figure 1 illustrates the procedure of finding the roots of Eq.
s13d in the b-g plane.

In general, there are several roots represented by the in-
tersection points of the horizontal lineg=b0 and the curves
g=g±sbd. Each root corresponds to the director configuration
whose energy can be calculated from Eq.s14d. The equilib-
rium director structure is then determined by the solution of
Eq. s13d with the lowest energy. Other structures can be ei-
ther metastable or unstable.

C. Strong anchoring limit

However, these results cannot be applied directly to the
case of the strong anchoring limit, whereWf

snd→` and the
boundary condition requires the director at the substratez
=nd/2 to be parallel to the corresponding easy axis,
nsnd/2d ien.

When the anchoring is strong at both substrates, it im-
poses restrictions on the values ofq, so thatq takes values
from a discrete setf1g. This set represents the director con-
figurations characterized by the parameterb and labeled by
the half-turn numberk,

b ; qd− Df = pk, k P Z. s16d

Substituting the values ofb from Eq. s16d into the first
term on the right hand side of Eq.s6d will define the equi-
librium value ofk as the integer that minimizes the distance
betweenpk andb0 s=q0d−Dfd. The steplike dependence of
b on b0 for these equilibrium structures is depicted in Fig.
2sad.

An experimentally important case concerns mixed bound-
ary conditions in which the strong anchoring limit applies to
the lower plate only,Wf

s−d→`. For brevity, this case will be

FIG. 1. The curves representing the plot of the functiong+sbd
and g−sbd are shown as thick solid and dashed lines, respectively.
The points located at the intersection of the curves and the horizon-
tal straight lineg=b0 give the roots of Eq.s13d. The value ofb0 is
s10+1/2dp sthin solid lined ands10+1/2dp±wf sthin dashed lined.
Two cases are illustrated:sad wf

s+d=wf
s−d=wf=p /2; sbd wf

s−d

=10.0,wf
s+d=2.19,wf=p /2 fsee Eq.s56dg.
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referred to as semistrong anchoring. Now the relationss12d
and s13d reduce to

a = b + 2pk, s17d

b0 = b + wf
s+dsins2bd s18d

and the energy of the helical structuress14d is now given by

fsbd = fwf
s+dsins2bdg2 + 2wf

s+dsin2b. s19d

Interestingly, in the semistrong anchoring limit, the parity of
half turns,m, does not enter either the energys19d or the
relation s18d.

III. STABILITY OF HELICAL STRUCTURES

In this section we present the results on stability of the
helical configurationss5d. These results then will be used in
Sec. IV to eliminate unstable structures from consideration.
We also give expressions for director correlation functions.
These are in order to discuss the effects of director fluctua-
tions.

We begin with the general expression for the distorted
director field

n = n0 cosu cosf + n1 cosu sinf + n2 sinu, sni,n jd = di j ,

s20d

where the vectorsn1 andn2 are

n1 = − ex sinuszd + ey cosuszd, n2 = ez. s21d

For small anglesf andu linearization of Eq.s20d gives the
perturbed director field in the familiar form

n < n0 + dn0, dn0 = n1f + n2u, c ; Sf

u
D , s22d

where the anglesf andu describe in-plane and out-of-plane
deviations of the director, respectively.

Following standard procedure, we can now expand the
free energy of the director fields20d up to second order terms
in the fluctuation fieldc and its derivatives,

Ffng < Ffn0g + Fs2dfcg, s23d

Fs2dfcg =E
V

fb
s2dfcgdv + o

n=±1
E

z=nd/2
Wn

s2dscdds. s24d

The second order variation of the free energyFs2dfcg is a
bilinear functional which represents the energy of the direc-
tor fluctuations written in the harmonicsGaussiand approxi-
mation. From Eqs.s1d–s3d we obtain expressions for the den-
sities that enter the fluctuation energys24d:

2fb
s2dfcg = K1s¹1f + ¹2ud2 + K2s¹1u − ¹2fd2 + K3fs¹0fd2

+ s¹0ud2g + qKqf2u¹0f + qu2g, s25d

2Wn
s2dscd = fWf

sndf2 cos 2un + Wu
sndu2 − 2nK24u¹1fgz=nd/2,

s26d

where¹i ;sni , = d.
In what follows we shall restrict our consideration to the

case of fluctuations invariant with respect to in-plane trans-
lations, so thatc;cszd. This assumption, although restrict-
ing applicability of our results, allows us to avoid complica-
tions introduced by inhomogeneity of the helical structure
s5d. In this case the fluctuation energy per unit area is

2Fs2dfcg/S=E
−d/2

d/2

c+K̂c dz+ o
n=±1

c+Q̂sndcz=nd/2, s27d

whereS is the area of the substrate. The operatorK̂ is the
differential matrix operator that enters the linearized Euler-
Lagrange equations for the director distributions20d, i.e.,

K̂c = 0. s28d

The eigenvalues ofK̂ form the fluctuation spectrumf19g.
The eigenvaluesl can be computed together with the eigen-
modescl by solving the boundary-value problem:

K̂cl = lcl, s29d

Q̂snducluz=nd/2 = 0. s30d

The expressions forK̂ andQ̂snd are given by

K̂ = S− K2]z
2 0

0 − K1]z
2 + q2Kq

D , s31d

Q̂snd = nSK2]z 0

0 K1]z
D + SWf

snd cos 2un 0

0 Wu
snd D , s32d

andKq is the effective elastic constant

FIG. 2. Dependence of the twist parameterbs=qd−Dfd on the
free twisting parameterb0s=q0d−Dfd at Wf

s−d=Wf
s+d;Wf for vari-

ous values of the dimensionless azimuthal anchoring parameter
wfs=Wfd/2K2d: sad strong anchoring limit,wf→`, discussed in
Sec. II C; sbd wf=p; scd wf=p /2; sdd wf=0.05p. Discussion of
the casessbd–sdd can be found in Sec. IV A.
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Kq = K3 − 2K2s1 − q0/qd. s33d

From Eqs.s31d and s32d the operatorsK̂ and Q̂snd are both
diagonal, so that the in-plane and out-of-plane fluctuations
are statistically independent and can be treated separately.

A. In-plane fluctuations

1. Strong and semistrong anchoring

We begin with the limiting cases discussed in Sec. II C
and where at least one of the bounding surfaces imposes the
strong anchoring boundary condition. This is the case when
we have to use a stability criterion related to the fluctuation
spectrum which requires all the eigenvalues to be positive,
l.0, so as to ensure the positive definiteness of the fluctua-
tion energyf19g.

It is not difficult to see that, for the strong azimuthal an-
choring present at both substrates, the lowest eigenvalue is

lm = K2sp/dd2 s34d

and all the structures with the twist parameters16d are locally
stable with respect to in-plane fluctuations.

For the semistrong anchoring withWf
s−d→`, this is no

longer the case. The stability condition is now given by

1 + 2wf
s+d coss2bd . 0. s35d

From Eq.s18d this condition requires the free twist param-
eterb0 to be an increasing function of the twist parameterb.
It is derived in the Appendixfsee Eq.sA11d with w+ replaced
by wf

s+d coss2bdg.

2. Weak anchoring

We have a somewhat different situation when the azi-
muthal anchoring strength is finite at both substrates. In this
case the stability conditions can be derived using an alterna-
tive proceduref19g. The procedure involves two steps:sad
solving the linearized Euler-Lagrange equationss28d; andsbd
substituting the general solution into the expression for the
fluctuation energys27d. The last step gives the energys27d
expressed in terms of the integration constants, so that the
stability conditions can be derived as conditions for this ex-
pression to be positive definite.

Following this procedure, we can obtain the stability con-
ditions for the helical structures characterized by the paritym
and the twist parameterb related to the free twist parameter
b through the relations13d. The final result is

Hm = Am + 2wf
s+dwf

s−d cosv+ cosv− . 0, s36d

Am = mswf
s+d cosv+ + wf

s−d cosv−d . 0, s37d

where v± are defined in Eq.s15d. These inequalities also
follow immediately from the stability conditionssA10d ob-
tained in the Appendix by puttingw±=mwf

s±d cosv±.
Violating any one of Eqs.s35d–s37d will result in instabil-

ity caused by slippage of the director in the plane of the
spiral. Such an instability cannot occur when the azimuthal
anchoring is strong at both substrates.

B. Out-of-plane fluctuations

We now study stability of the helical structures with re-
spect to the out-of-plane fluctuations. To this end we replace
l with K1s2/dd2l and rewrite the eigenvalue problems29d
and s30d for u in the following form:

f]t
2 − rq/4 + lgulstd = 0, s38d

f±]tul + wu
s±dulgt=±1 = 0, s39d

rq = sqdd2Kq/K1 = sb + Dfdfr3sb + Dfd + 2r2sb0 − bdg,

s40d

wu
snd ;

Wu
sndd

2K1
=

d

2Lu
snd , s41d

wheret;2z/d, r i ;Ki /K1, and Lu
snd is the polar anchoring

extrapolation length.
The stability conditionl.0 can now be readily written

as follows:

4lm + rq . 0, s42d

wherelm is the lowest eigenvalue of the problems38d and
s39d computed atrq=0.

When the polar anchoring is strong at both substrates,
Wu

s±d→`, the eigenvaluelm is knownssee remark at the end
of the Appendixd:

lm = skmd2 = p2/4. s43d

Otherwise,km is belowp /2 and can be computed as the root
of the transcendental equation deduced in the Appendixfsee
Eq. sA12dg,

Dskmd ; swu
s+dwu

s−d − km
2 dsin 2km + kmswu

s+d + wu
s−ddcos 2km

= 0, s44d

where 0økm,p /2.

1. Strong anchoring

In the strong anchoring limit, Eq.s16d implies that the
values of the twist parameterb are quantized and do not
depend on the free twist parameterb0. Unstable configura-
tions are characterized by twist wave numbers violating the
stability condition s42d with lm given in Eq. s43d. These
wave numbers are described by the inequalities

1/b̃− ø 1/b̃ ø 1/b̃+, b̃ ; qd/p, b̃0 ; q0d/p,

1/b̃± = − r2b̃0 ± fsr2b̃0d2 + 2r2 − r3g1/2. s45d

These inequalities yield two different sets of unstable struc-
tures depending on the sign of the differences2K2−K3d. For
q0ù0 these sets are given by

q ù sp/ddub̃+u or q ø − sp/ddub̃−u, 2K2 . K3, s46d
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− sp/ddub̃+u ø q ø − sp/ddub̃−u

at q0 ù p/sdr2dÎr3 − 2r2, K3 . 2K2.

s47d

Equations46d shows that, when the energy cost of bend is
relatively small, there are an infinite number of unstable con-
figurations and the configuration loses its stability as the dis-
tance between its wave numberq and q0 becomes suffi-
ciently large.

Otherwise, unstable configurations may appear only if the
free wave numberq0 exceeds its critical value given in Eq.
s47d. In this case the number of the unstable configurations is
finite. From Eq.s47d there is no unstable configuration for
nematic liquid crystals withq0=0. This result has been pre-
viously reported in Ref.f20g.

2. Weak anchoring

We now pass on to the case where the strengths of an-
choringWf

s±d are not infinitely large. By contrast to the case
of strong anchoring, the twist parametersb andb0 are now
not independent. Rather we have the stationarity condition
s13d relatingb andb0. In addition, if the polar anchoring is
also not infinitely strong, the eigenvaluelm can be consider-
ably reduced.

In these circumstances, it is reasonable to approximate the
left hand side of the stability conditions42d by its lower
bound derived in the limit of weak polar anchoring,Wu

snd

→0, wherelm vanish. Technically, the resulting condition

rqsb,md = sb + Dfdf2r2b0sb,md + sr3 − 2r2db + r3Dfg . 0

s48d

is sufficient but not necessary for stability. Thus, when the
inequalitys48d is satisfied, the structure will certainly be lo-
cally stable with respect to out-of-plane fluctuations what-
ever the polar anchoring is.

Equations48d can now be used to study out-of-plane fluc-
tuation induced instability of the helical structures which are
otherwise stable with respect to in-plane fluctuations and
thus meet the stability conditionss36d and s37d. For Df=0
and positive twist wave numbers, such instabilty may occur
only if the doubled twist elastic constant exceeds the bend
elastic constant, 2K2.K3, and the azimuthal anchoring en-
ergy is sufficiently large. In this case, however,rq can be
made non-negative by increasing the value of the free twist
parameterb0. In other words, if the ratio of the cell thickness
and the equilibrium CLC pitch is large enough to meet the
condition s48d we can neglect out-of-plane deviations of the
director and use the “smecticlike” free energys6d.

C. Correlation functions

Our calculations of the director fluctuation static correla-
tion function kcszdcsz8dl use the relationf19g

kcszdcsz8dl =
kBT

S
Gsz,z8d, s49d

wherekB is the Boltzmann constant andT is the temperature.
The Green functionGsz,z8d can be computed as the inverse

of the operatorK̂ defined in Eq. s31d by solving the
boundary-value problem

K̂Gsz,z8d = dsz− z8dÎ , s50d

Q̂sndGsz,z8dz=nd/2 = 0, s51d

where Î is the identity matrix and the operatorQ̂snd is given

in Eq. s32d. Since the matrix operatorsK̂ and Q̂snd are both
diagonal, the correlation functions49d is also diagonal:

kcszdcsz8dl = Skfszdfsz8dl 0

0 kuszdusz8dl
D . s52d

Solving the boundary-value problems50d and s51d yields
the following expressions for the in-plane and the out-of-
plane components of the correlation functions52d:

kuszdusz8dl =
kBTd

2SK1kDskd
fwu

s−dssinkds1 + 2z,/dd + kscoskd

3s1 + 2z,/ddgfwu
s+dssinkds1 − 2z./dd

+ kscoskds1 − 2z./ddg, s53d

kfszdfsz8dl =
kBTd

2SK2Hm

f1 + ms1 + 2z,/ddwf
s−d cosv−g

3 f1 + ms1 − 2z./ddwf
s+d cosv+g, s54d

wherek2=−rq/4 , z,;minhz,z8j , z.;maxhz,z8j, andDskd
and Hm are defined in Eq.s44d and Eq.s36d, respectively.
The correlation functions diverge on approaching the bound-
ary of the stability region. For out-of-plane fluctuations, the
denominator of the expression forkuszdusz8dl vanishes in the
limit of marginal stability where −rq/4→lm=km and Dskd
→Dskmd=0. Similarly, Eq.s36d shows that, in the marginal
stability limit for in-plane fluctuations,Hm goes to zero thus
rendering the correlation functionkfszdfsz8dl divergent.

IV. TRANSITIONS INDUCED BY FREE WAVE NUMBER
VARIATIONS

In the previous section we have studied the stability of the
CLC helical structuress5d with respect to both in-plane and
out-of-plane fluctuations. We have found that the anchoring
conditions play a crucial role in the calculations. In particu-
lar, cells with strong anchoring and those with what we have
called semistrong anchoring exhibit significantly different
properties.

In this section we concentrate on the weak anchoring
cases. We have shown that in this case helical structures are
characterized by the twist parameterb and the half-turn par-
ity m. These quantities are related to the free twist parameter
b0 through the stationary point equations13d. The structure
responds to variations of the free wave numbersand thus the
free twist parameterd by changing its twist parameter.

This change may render the initially equilibrium structure
either metastable or unstable. When the anchoring is not in-
finitely strong and the free twist parameter is large enough to
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meet the stability conditions48d, this instability is solely
governed by in-plane director fluctuations and defines the
mechanism dominating transformations of the director field.
This mechanism is suppressed in the strong anchoring re-
gime, where the structural transitions involve tilted configu-
rations f20g, and can be described as director slippage
through the energy barriers formed by the surface potentials.

In this section our task is to study helical structure trans-
formations as a function of the free twist wave numberq0 for
different anchoring conditions. Equivalently, we focus our
attention on the dependence ofb on b0; this can be thought
of as a sort of dispersion relation. To this end we examine in
more detail the consequences of the analytical results ob-
tained in the previous sections, Secs. II and III.

A. Symmetric cells

When the anchoring strengths at both substrates are equal,
Wf

s−d=Wf
s+d;Wf, the right hand side of Eq.s13d is

b±wfsinb swf=Wfd/2K2d andv±=b. In this case the sta-
bility of the configurations is governed by Eq.s37d which
reduces to the simple inequalitym cosb.0.

It immediately follows that the values ofb representing
the locally stable structures of the paritym ranged between
sk−1/2dp and sk+1/2dp, wherek is the evensoddd integer
at m= +1sm=−1d. The integerk will be referred to as the
half-turn number. The paritym introduced in Sec. II is now
shown to be the parity of the half-turn number:m=s−1dk.

The intervals of b for the stable configurationsfsk
−1/2dp ,sk+1/2dpg are now labeled by the half-turn number
k. Since the functiongm fm=s−1dkg monotonically increases
on the interval characterized by the half-turn numberk, the
value of b0 runs fromsk−1/2dp−wf to sk+1/2dp+wf on
this interval. As a result, for each half-turn numberk, there is
a monotonically increasing branch of thebsb0d curve.

The branches withk ranged from 10 to 13 for different
values of the dimensionless anchoring energy parameterwf

are depicted in Figs. 2sbd–2sdd. We see that theb0 depen-
dence ofb will always be discontinuous provided the an-
choring energy is not equal to zero. Figure 2sdd shows that
the jumps tend to disappear in the limit of weak anchoring,
where the azimuthal anchoring energy approaches zero,wf

→0.
As we pointed out in Sec. II C for the case of strong

anchoring, there are two equilibrium structures of the same
energy atb0=s1/2+mdp. In Fig. 2sad the arrows indicate
that the half-turn number of the equilibrium structure
changes at these points.

Similarly, when the anchoring is weak,wf,p, and b0
=s1/2+mdp, Eq. s13d possesses two different roots withk
=m and m+1 which are equally distant fromb0 and are of
equal energy. In Fig. 3sad, the free energys14d is shown as a
function of b0. It can be seen that the intersection points of
the curves for different parities,ssolid and dashed lines in
Fig. 3d are indeed atb0=s1/2+mdp. The parity of the equi-
librium configuration reverses asb0 goes through the values
s1/2+mdp. Figure 3sbd illustrates that this is also the case
even if wfùp.

For m=10, Figs. 3sad and 4sad show that the initially equi-
librium structure with the half-turn numberk=10 ssolid lined
becomes metastable asb0 passes through the critical point
b0=s1/2+mdp at which the structures withk=10 and 11
sdashed lined are degenerate in energy. In Figs. 3sad and 4sad

FIG. 3. The free energyf+ ssolid lined and f− sdashed lined of
stable configurations with the half-turn numberk between 10 and
14 as a function ofb0 computed from Eq.s14d by using Eq.s13d for
two values of the anchoring energy parameters:sad wf=p /2; and
sbd wf=p. The intersection point of the branches withk=10 and 11
at b0=10.5p is indicated by a circle. Squares mark energy of the
structures at the transition point withb0=11p where the configu-
ration withk=10 loses its stability. It is shown that the energy of the
helical structure withk=10sk=11d increasessdecreasesd asb0 var-
ies from 10.5p to 11p.

FIG. 4. The free energyf+ ssolid lined and f− sdashed lined of
the configurations with the half-turn numberk between 10 and 14 as
a function ofb computed from Eq.s14d. Thin lines represent the
energy of unstable configurations. Two cases are shown:sad wf

s−d

=wf
s+d=wf=p /2; and sbd wf

s−d=10.0,wf
s+d=2.19 ss=5.6 and wf

=p /2d. Circles and squares label energy of the structures atb0

=10.5p and 11p shown in Fig. 3sad. At b0=10.5p, the structures
with k=10 and 11 are shown to be degenerate in energy and sepa-
rated by the energy barrierDf.
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the structures at this point are indicated by circles.
As is seen from the figures, relaxation to the new equilib-

rium state will require the jumplike change of the twist pa-
rameterb. In addition, the transition between the metastable
and the equilibrium configurations involves penetrating the
energy barrierDf that separates the states with different half-
turn numbers. This barrier can be seen from Figs. 3sad and
4sad where the free energys14d is plotted as a function ofb0
andb, respectively.

Previous authorsf14,15,17g have supposed that the tran-
sitions may occur only if there is no energy barrier. Clearly,
this assumption implies that the jumps take place at the end
points of the stability intervals,b0=b±

skd=s1/2+kdp±wf,
where the configuration with the half-turn numberk becomes
marginally stablesAm=Hm=0d and loses its stability.

These transitions are indicated by arrows in Figs. 2, 3, and
5. As is seen from Fig. 2scd, in this case the upward and
backward transitionsk→k+1 andk+1→k occur at different
values of b0:b+

skd and b−
sk+1d=b+

skd−2wf, respectively. So
there are hysteresis loops in the response of CLC cell to the
change in the free twisting number.

We can now describe how the increase in the anchoring
energy will affect the scheme of the transitions. To be spe-
cific, we consider the critical end pointb0=b+

skd, so that for
small anchoring energies withwf,p /2 there are only two
configurations: the marginally stable initial configuration
with b=bk and the equilibrium structure withb=bk+1. In
this case Eq.s13d has at most two roots and the jumps will
occur as transitions between the states whose half-turn num-
bers differ by unity,uDku=1.

At wf=p /2, as shown in Fig. 3sad, we have two margin-
ally stable structures of equal energy:bk andbk+2. The newly
formed structurebk+2 being metastable atp /2,wf,p will
have free energy equal to the energy of the equilibrium con-
figurationbk+1 at wf=p. So, as illustrated in Figs. 2sbd and
3sbd, both transitionsk→k+1 andk→k+2 are equiprobable

and we have the bistability effect at the critical point under
wf=p.

For p,wf,3p /2 there are three configurations: the ini-
tial configurationbk, the metastable configurationbk+1, and
the equilibrium structurebk+2. The configurationbk+3 being
formed atwf=3p /2 will define the equilibrium structure at
2pøwfø3p and so on.

The general result for the critical pointb0=b+
skd can be

summarized as follows. Whensl +1/2dp,wf, sl +3/2dp,
in addition to the marginally stable configurationbk, there
are l +2 stable configurations with the half-turn numbers
ranged fromk+1 to k+ l +2. The half-turn number of the
equilibrium structure equalsk+ l +1 under lp,wf, sl
+1dp.

It immediately follows that the restrictionwf,p im-
posed by Belyakov and Katsf15g on the anchoring strength
requires the relaxation transitions to involve only two struc-
tures withuDku=1. Our result shows that, when the anchoring
parameterwf falls betweenlp and sl +1dp, the half-turn
number change isuDku= l +1 for the transitions between mar-
ginally stable and the equilibrium states. Clearly, we can
have transitions with evenDk that involve topologically
equivalent configurations with common parityf21,22g. Such
transitions may also be induced by the thermal director fluc-
tuations without formation of defects even if the anchoring is
infinitely strongf20g. Though the mechanism under consid-
eration is rather different, neglecting the director fluctuations
can only be regarded as a zero-order approximation.

Indeed, according to our remark at the end of Sec. III B,
the expression for the fluctuation correlation functions54d
implies its divergence upon reaching a marginally stable
state whereHm=0. It means that taking the fluctuations into
account will give the transition points located within the sta-
bility interval. This fluctuation induced shift may also sup-
press the hysteresis provided the mean square angle devia-
tion Îkf2l, computed from Eq.s54d at b0=s1/2+mdp and
z=z8=d/2, and the anchoring energy parameterwf are of the
same order.

B. Asymmetric cells

When the anchoring energies at the surfaces are different,
Wf

s−dÞWf
s+d and eÞ0, sinv+ on the right hand side of Eq.

s13d equals zero atb=p /2+pk and, as demonstrated in Fig.
1sbd, we have additional intersection points of the curves
g+sbd andg−sbd. It can be shown that the stability conditions
are now defined by Eq.s36d and the twist parametersb of the
marginally stable configurations, whereHm=0, can be com-
puted as the stationary points ofgm.

These points represent the local maxima and minima of
gm and are located atb=s1/2+kdp±Db. The equation for
Db is

wf
s+ds1 + edsinsDb − e arctanfe cotDbgd

= −
1 + se2 − 1dcos2Db

1 + se − 1dcos2Db
, s55d

whereDbP f0,p /2g.

FIG. 5. Dependence ofb on b0 calculated atw−=10.0 for vari-
ous values of the parameterssf=2wf

s−dwf
s+d / swf

s−d−wf
s+ddg and wf

fsee Eq.s56dg: sad wf=pss=11.8 andwf
s+d=3.705d; sbd wf=p /2

ss=5.6 and wf
s+d=2.19d; scd s=1.0swf

s+d=wc=0.476d; sdd s

=0.5swf
s+d=0.25d.
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From the stability conditionHm.0 the values ofb for
stable configurations fall between the stationary pointssk
−1/2dp+Db and sk+1/2dp−Db, where the half-turn num-
ber k is an evensoddd integer depending on the parity. The
function gm monotonically increases andb0 varies fromsk
−1/2dp−wf to sk+1/2dp+wf on the stability interval with
the half-turn numberk. The effective dimensionless anchor-
ing parameterwf, as opposed to the case of equal anchoring
energies withwf

s±d=wf, is now given by

wf = wf
s+d cossDb − e arctanfe cotDbgd − Db. s56d

Clearly, we can now follow the line of reasoning pre-
sented in Sec. IV A to find the results concerning hysteresis
loops and bistability effects that are quite similar to the case
of equal anchoring strengthsfsee Figs. 5sad and 5sbdg. There
are, however, two important differences related to Eqs.s55d
and s56d.

If DbÞ0, the intervals ofb representing stable director
configurations are separated by the gap of the length 2Db.
The presence of this gap is illustrated in Figs. 5sad and 5sbd.
Figure 4sbd shows the gap between stable branches of the
dependence of the free energy onb. The values ofb within
the gap represent unstable configurations and form the zone
of “forbidden” states in the CLC cell.

The graph of theDb vs wf
s+d dependence is presented in

Fig. 6. As expected, the gap is shown to disappear in the
limit of equal energies,wf

s+d=wf
s−d. Another and somewhat

more interesting effect is that there is a small critical value of
wf

s+d below whichDb also vanishes.
In order to interpret this effect, we note that Eq.s13d with

b0=s1/2+kdp has the only solutionb=b0, provided the azi-
muthal anchoring energy parameters meet the condition

s ;
2wf

s−dwf
s+d

uwf
s−d − wf

s+du
ø 1. s57d

Another form of this condition

uLf
s+d − Lf

s−du ù d s58d

implies that the difference between the azimuthal anchoring
extrapolation lengths is larger than the cell thickness. For
hybrid cells, a similar inequality is known as the stability
condition of homogeneous structuresf23–25g.

In this case the gap disappears and the dependence ofb
on b0 becomes continuous in the manner indicated in Figs.
5scd and 5sdd. Given the value ofwf

s−d the relations57d yields
the threshold value for the anchoring strength at the upper
substrate:

wc =
wf

s−d

2wf
s−d + 1

. s59d

So the jumps and the gap will vanish atwf
s+d=wc. Analo-

gously, as illustrated in Fig. 7,wf goes to zero at the critical
point wf

s+d=wc, while for large values ofwf
s−d the dependence

of wf on wf
s+d is approximately linear.

In closing this section we discuss the limiting case of
semistrong anchoring wherewf

s−d→`. For this purpose we
can combine the stabillity conditions35d with Eq. s18d link-
ing the free twisting parameterb0 and the twist parameterb
of the helical structures characterized by the energys19d.

From the stability conditions35d the gap separating the
stability intervals ranged betweensk−1/2dp+Db and sk
+1/2dp−Db is given by

2Db = Harccoss2wf
s+dd−1, 2wf

s+d . 1,

0, 2wf
s+d ø 1.

J s60d

This result also follows from Eq.s55d in the semistrong limit
e→1. Similarly, the expression forwf s56d simplifies to the
following form:

wf = wf
s+dsins2Dbd − Db. s61d

Equationss60d and s61d explicitly show that the gap and
the hysteresis loops both disappear when the anchoring

FIG. 6. Dependence ofDb on wf
s+d for various values of the

anchoring energy parameterwf
s−d.

FIG. 7. Dependence ofwf on wf
s+d for various values of the

anchoring energy parameterwf
s−d. It is shown thatwf=wf

s−d at wf
s+d

=wf
s−d andwf=0 at wf

s+d=wc fsee Eq.s59dg.
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strength is sufficiently small and 2wf
s+dø1. In other words,

when the inequality

Lf
s+d ù d s62d

is satisfied, the discontinuities turn out to be suppressed.
Thus, in asymmetric CLC cells, the left hand side of Eqs.

s58d and s62d define the critical cell thickness below which
the b vs b0 curve becomes continuous. For semistrong an-
choring, this effect can be seen from the curves shown in
Fig. 8.

V. DISCUSSION AND CONCLUSIONS

In this paper we have studied how the pitch wave number
q of the helical director configuration in the CLC cell de-
pends on the free twisting numberq0 at different anchoring
conditions imposed by the cell substrates. It is found that this
dependence is generally discontinuous and is characterized
by the presence of hysteresis and bistability.

We have shown that asymmetry in the strengths of the
director anchoring with the substrates introduces the follow-
ing new effects:sad the jumplike behavior of the twist wave
number is suppressed when the difference between the azi-
muthal anchoring extrapolation lengths is larger than the cell
thickness;sbd the twist wave number intervals of locally
stable configurations with adjacent numbers of helix half
turns are separated by a gap in which the structures are un-
stable.

Using stability analysis we have emphasized the idea that
the instability mechanism behind the transitions between the
helical structures is dominated by the in-plane director fluc-
tuations. These fluctuations may render the structures un-
stable only if the anchoring energy is finite.

In this case the height of the energy barriers separating the
CLC states in the space of in-plane variables is determined
by the surface potentials and is also finite. The mechanism
can, therefore, be described as slippage of the director

through the anchoring energy barrier. Interestingly, a similar
mechanism can be expected be important in trying to extend
the theory of Ref.f26g, where shear induced melting of
smectic-A liquid crystals has been studied in the strong an-
choring limit, to the case of weak anchoring.

The part of our analysis presented in Sec. IV A relies on
the assumption that the transition between configurations
with different half-turn numbers occurs when the initial
structure loses its stability, so that the pitch wave number is
no longer a local minimum of the free energy surface. The
result is that the stronger the anchoring, the larger the change
of the half-turn numbersand of the twist wave numberd
needed to reach the equilibrium state. So, whichever mecha-
nism of relaxation is assumed, the metastable states certainly
play an important part in the problem when the anchoring is
not too weak.

It was recently shown by Bisiet al. f27g that the instabil-
ity mechanism in twisted nematics may involve the so-called
eigenvalue exchange configurationsf28,29g. These configu-
rations and the tilted structures are, however, of minor im-
portance for the director slippage induced instability. They
may be important outside the parameter regime considered
here, and we will discuss alternative mechanisms in more
detail elsewhere.

The dynamics of the transitions is well beyond the scope
of this paper. Despite some very recent progressf30g, it still
remains a challenge to develop a tractable theory that prop-
erly account for director fluctuations, hydrodynamic modes,
and defect formation. Simultaneously we have seen at the
end of Sec. IV A that fluctuation effects can be estimated by
using the expression for the correlation functions given in
Sec. III C. But in order to take the fluctuations into consid-
eration a systematic treatment is required.
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APPENDIX: FLUCTUATION SPECTRUM
AND STABILITY CONDITIONS

In this appendix we comment on the eigenvalue problem
written in a form similar to Eqs.s38d and s39d,

f]t
2 + lgXlstd = 0, sA1d

f±]tXl + w±Xlgt=±1 = 0, sA2d

wherel is the eigenvalue andXlstd is the eigenfunction. Our
task is to derive the conditions that ensure positive definite-
ness of the eigenvalues.

FIG. 8. Twist parameterb as a function ofb0 in the limit of
semistrong anchoring,wf

s−d→`. Two cases are shown:sad wf
s+d

=2.3017.0.5 with wf=p /2 fsee Eq. s61dg; and sbd wf
s+d=0.4

,0.5.
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To this end we consider the case of negative eigenvalues
with l=−k2 and substitute the general solution of Eq.sA1d,

Xlstd = Al sinhkt + Bl coshkt, sA3d

into the boundary conditionssA2d. This yields a homoge-
neous system of two linear algebraic equations for the inter-
gration constantsAl and Bl. The system can be written in
matrix form as follows:

H ·SAl

Bl
D = S0

0
D , sA4d

where

H = S k coshk + w+sinhk k sinhk + w+coshk

− k coshk − w−sinhk k sinhk + w−coshk
D .

sA5d

Nonzero solutions of Eq.sA4d exist only if the determinant
of the coefficient matrixH vanishes, detH =0. For the ma-
trix sA5d, this yields a transcendental equation

k2sinh 2k + sw+ + w−dk cosh 2k + w+w−sinh 2k = 0

sA6d

whose roots determine the negative eigenvalues through the
relationl=−k2.

EquationsA6d can be conveniently recast into the form

fsxd ; x2 + axcothx = b, sA7d

wherex;2k , a;2sw++w−d, andb;−4w+w−. It is now not
difficult to see that the inequality

b , min
xù0

fsxd ; min
xù0

sx2 + axcothxd sA8d

provides the condition for the eigenvalues to be positive.
EquationsA8d combined with the relationb.−a2/4 can

be analyzed using elementary methods. The final result

b , a, a . 0 sA9d

immediately leads to the inequalities

w+ + w− + 2w+w− . 0, w+ + w− . 0, sA10d

which ensure positive definiteness of the spectrum. In the
semistrong limit,w−→`, the conditionssA10d assume the
following simplified form:

1 + 2w+ . 0. sA11d

Our final remark is that changingk to ik in Eq. sA6d gives
the equation

sw+w− − k2dsin 2k + sw+ + w−dk cos 2k = 0. sA12d

The roots of this equation determine positive eigenvaluesl
=k2. In the strong anchoring limit,w±→`, Eq. sA12d takes
the well-known form sin 2k=0 leading to the relations43d.
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